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SECTION 1

INTRODUCTION

The purpoce of this document is to provide a standard algebraic

model for a continuous-wave (CW) high-energy-laser (HEL) beam on target.

The betnt is degraded by thermal blooming as well as numerous other

effects. The algebraic model is intended for systems analysis exer-

cises, where the numerous parameters are to be explored, making more

detailed computer simulation of atmospheric propagation impractical.

It is an outgrowth of efforts to fit scaling laws to a large body of

data generated by detailed atmospheric propagation simulations using

a finite-difference wave-optics code.*

Any such wave-optics code provides a detailed intensity profile

on target, from which several different summary characteristics can be

extracted. These include, for instance, peak intensity, line-of-sight
beam dispersion, and beam area. The last of these further admits

several definitions, including area to some percentage of total power,

and area defined by a ratio of squared integral of intensity to integral
of intensity squared (suggested independently by Lincoln Laboratory
and Draper Laboratory researchers). If beams on target were Gaussian
in shape, all such characteristics would convey equivalent information.
The simplified algebraic model assumes that this is nearly the case,

and speaks nominally of peak intensity on target.

Regression analysiu of the results has shown that peak intensity

can be correlated with an integral T h' which represents the accumulation

along range (starting from the center of the tperture) of phase pertur-

bation due to heating in a beam with absorption, scattering, convective

clearing, and focusing. Figures 1, 2, and 3 show the tightness of the

correlation obtained for three different beam shapes. The ordinate is

the phase integral Th and the abscissa in the ratio R - (IU - [)/I,

where I is peak intensity and IU is unbloomed peak intensity.

Data provided by D. Cordray of Naval Research Lab (IRL).
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Any one of many numerically similar functional forms could be fit
to the curves defined by the correlation data. Thir document selects
one that has been found most uceful bocause of its algebraic simplicity.
Section 2 shown how the simple algebraic form leads to a number of
universal relationshipii that are independent of almost all physical
details of the propagation process. These relationshiis describe the
variation of peak intensity as a function of pover alone, with all
other variables held constant. Important relationships are shown to
depend only on beam shape. This conclusion has not previously been
evident from other scaling laws.

Section 3 discusses the parameters appearing in Section 2, showing
how each depends on actual physical variables that describe the mgage-
ment, the laser, and the atmosphere. Section 4 provides a technique
for accurately evaluating the phase integral along range required in
Section 3. For several coinon beam shapes, Section 5 discusses numerical
values of regression parameters defined in Section 3. Section 6 pro-
vides a concise summary of all formulas required for systems analysis

exercises.
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Figure 1. Correlation for infinite
Gaussian beam.
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SELTION 2

INTENSITY DEGRADATION AS A
FUNCTION OF POWER

For a class of problems differing only in time-average power (P),
the ratio of bloomed to unbloomed intensity focused on target can be

modeled au

2
0L a

2Bin this expression, a is the 1/e line-of-sight beam dispersion in

radians due to linear effects, including diffraction, beam quality,
turbulence, and jitter. The l .atter two effects separato into 'high"
and "low" frequencies, whicn, respectively, do and do not impact
blooming. The latter is represented in the term 2B. To some exant,

the form of I(P)/Iu(P) expresses the familiar idea of Orss-ing" (root-
sum-squaring). For a Gaussian beam, dispersive effects combine by
summing variances, and the denominator (a + a2) resembles such a sum.L B

2The blooming term (a ) dependa on power (P) in a way that can be

modeled by a variety of functional forms. The choice of form is a

tradeoff between simplicity and range of validity. In this report,
we use the simplest form known to be valid for power levels of practical
interest. This form is nominally

2 aB• - CBPa

aThe use of P with a > 1 allows reproduction of a well-known
physical pheaomenons there exists a critical power PC sach that the

This type of foriaula has also been suggested and used by F. Gothardt
and J. Wallace. In particular, Wallace suggested a - 3/2.

-
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2
intensity on target is maximum. That PC can be related to aL, CB,

and a am follows. The unbloomed intensity on target is proportional

to P, so that actual intensity is proportional to or
PC:/(aT + CBP ). Differentiating with respect to P and setting the
derivative to zero gives

[2]l/a
Ca

S]1

BI'
From the value of PC, the ratio I(Pc)/Iu(Pc) is readily found

to be

I (P C) a-

This result is interesting because it depends only on the parameter a,
2expressive rf beam shape alone, and not on a or C3, which contain much

of the physics of the problem. It therefore presents a physical
phenomenon that is essentially separable from other physical phenomena
in the overall propagation process.

The result concerning I(Pc)/Iu(Pc) indicates what to expect from

adaptive phase correction for thermal blooming. Since phase corroction i
does nt change beam shape, it will move the whole curve of intensity-
out versus power-in in such a way that the new peak, the old peak, and

the origin lie on a straight line, as illustrated in Figure 4.

Clearly, PC marks the upper limit of power levels having practical
interest. In fact, operation well below PC may be of interest, so let
us consider P at same fraction of PC: P - Pc/b° Then

2 aI a L + C a(LC)
C b a a + c IC

which simplifies to

WC7 b&(a 1) + 1

This result, too, is independent of a and C.of and therefore is

independent of the phenomena controlling them.

5



SLOPE 1

SLOPf E

Figure 4. Adaptive correction of phase without
change of beam shape.

The formula describing opezation below PC is plotted in Figure 5
for several typical values of a. For all cases, there is little point
in operating at power levels above PC/2, because more than 85% of the
limiting peak intensity is already available at PC/2.

The formulas for I(Pc)/Iu(Pc) and I(Pc/b)/I(Pc) can be combined
to relate I(PM b) to I (P ). The result is

I()(a -1)b

- aU ba(a - 1) + 1

2This result, too, is independent of the parameters aL and C3 that carry

most of the physics of the prohlem. It means essentially that if Iu(PC)
is specified, I for any other condition is implicitly specified.

S6j
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Figure 5. Operation below PC
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S~The model presented in this section in most accurate in the regime

of physical interest for systems modeling, namely, below the zero-wander

value of PC. This in the came because below this power there in relatively

little blooming, with little attendant beam distortion and no beam-•

breakup. There in then a one-to-one Gaussian-like correspondence between

intensity I and the various disr,-rsiva a 2 terms. Operation far above

such a power level requires a mor,.* complex model,, involving linear and

quadratic laser power terms in aB presented by Breaux. (W*

The ratio-type results of this section are of a very general

nature, and are valid regardless of the methodology used to evaluat.e a,
2

oL CBI or lu(Pc). Specific techniques for evaluating these are

S~provided in the Sections 3 through S.

S~Superscript numerals refer to similarly numbered items in the Li~st
i of References.

a - 1.r

'Ai



SECTION 3

PHYSICAL MODEL

The model for degradation of intensity focused on target as a
2function o. power has only three parameters (a, 0 L, and C.), and requires

only IU(P)C to specify intensity under any conditions. A small amount

of data for a given class of problems differing only in P will suffice

to determine all the required quantities. But extrapolating the rp-

sults to any other class of problems requires some kind of physical

model. The expoi.ent a can be assumed to be independent of many physical

variables, so the more pressing problems are to admit defocus, and to

model a', C,, and Iu(P

The physical variables affecting HEL propagation are designated

in Table 1. In cases where t.he propagation path extends through signif-

icantly different altitudes, path averaging of parameters is required.
2(See Reference 1, p. 59 for applicable techniques regarding C2.)
n

These parameters can be summarized in terms of four dimensionless

numbers:

Absorption number NA -OLZ

• Ut t

Slew number WS "U

21iR 2

Fresnel number NF " 2i tra

Distortion number ND - _W|-3

Defined appropriate to this model.

Subscript - me,'ns unperturbed natural value.

18
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Table 1. Physical variables affecting
HEL propagation.

Parameter Variable Units

Engagemert

Target range Zt meters

Transverse target Ut meters/second
velocity

Laser

Aperture radius Rm meters

Time average power P Joules/second

Wavelength meters

Beam quality M no dimension

Beam shape no dimension, not a scalar

Atmosphere

Wind velocity Uw meters/second

Turbulence C2  meters-2/3
n

Absorption a meters

Scattering a meters-1

Index of refraction n no dimension

Temperature T degrees

Refraction gradient 3n/3T degrees 1

Density p kilogram-meters-3

Heat capacity Cp Joules/degree-kilogram

IP

9
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There are also effective beam qualities N0 and N6, which repre-

sent the actual se-oading of the beam due to various effects. These
efiects include beam shape and the blooming itself, and so NQ and

N6 must be defined later. A procedure is provided in Section 6.

The ro2 is l/e radial beam dispersion due to linear effects. It
L

includes a number of contributors, distinguished by different subscripts:
diffraction and beam quality (D), high--frequency beam distortion and

motion due to turbulence (T) and jitter (J), low-frequency beam wander
MW) due to turbulence, jitter, and pointer-tracker effects. Thus, we

have

2 2 +a 2+ 2+ 2
L D T "3 W

The formula for the diffraction contributor is

a - O.5(I.It--2

where m' is characteristic of beam shape. Requiring T aD to be the

63% beam radius on target makes m' equal to 2/w for an infinite

Gaussian beam, equal to 0.9166 for a 1/e2 truncated Gaussian beam, and

equal to 0.9202 for a uniform beam (see Reference 2).

The turbulence contributor refers specifically to the short-term
high-freqW~ency part of total turbulence. It has been found by Breaux(3)

that for a large variety of beam shapes, total turbulence is well

represented by

a2)2 
2(D)2

aTT VW rM 0r

where r 0 is the Fried coherence length for wave number k - 2w/A

r t -3/5

r 2.10 45k2 Z (f) d2M0
0

10



F and De is an effective aperture size, appropriate to the beam shape. For

infinite Gaussian, truncated Gaussian, or uniform beams, reepectively,

it is

2 2 2 2 I
De 8R; Sm 3 .7%, 4R;S~e

The short-term part (aT is smaller, varying between the values

T

for De/r0 < 3 and 0.182
iR02 CA))-[(L)- \r0,)J

S~To ensure model validity, the high-frequency turbulence should be

limited to values small enough to cause no speckling, say uT< 2oD. The2 2 2
fTT aT) may or may not appear in the wander term

depending on the particular hardware implementation being modeled.

Additional jitter and wander contributors arise from the particular

hardware considered, and must be set by the user.

The dispersion due to blooming is to be combined with the linear
2 2 2 2

dispersions simplified by a2, c2 oa , and we proceed now to

consider the blooming term

2 a

The physical phenomenon that causes ca is accumulation along range of phase
B

due to heating, which increases with power (P). and decreases, to some
2extent, with that portion of a that actually experiences the blooming,

11
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2 2namely a - O.N It has been found possible to define a measure Th for
heating phase such that the following expanded expression vell represents

2

2- C (o - 2 a

where C' is a dimensionless coefficient that depends on beam shape.

Clearly

, 2 2 i
CB "Ci(•- )

The form of Th that makes the above representation of a. possible
is proportional to NDNF/.N. The phase integral (Th also has an
additional factor to make it into an integral along range that takes
account of extinction, clearing, and focusing of the beam. Its evalua-
tion is the subject of Section 4.

Next, Iu(P ) is easily estimated by considering total extinction
(c - a + a), beam shape and quality, and the spreading due to linear

effects. The estimate is

PC exp('cZt)I U iP c ) 2 1vZ 2 0o 2B

Here, B is a beam-shape factor, which can be roughly interpreted as the

ratio of average intensity to "peak" intensity in the focal plane. For
a Gaussian beam, it is exactly 1/2, and for any realistic beam shape,
it is quite close to 1/2.

I
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f SECTION 4

PHASE INTEGRAL

In Section 3, the problem of evaluating CB was reduced to the

problem of evaluating the phase integral h Many integration pro-(1, 4,5)
cedures have been investigated, and most can be mad* numerically
adequate. The following is straightforward to explain. Let

S~1

T J Y (z) dz
0

where

z Z
zt I

N W exp(-CZ) dt I x 0 (z,t), y 0 (Z,t j

Yh(Z) FR.z)

S~Here, exp(-eZ) represents extinction. Te variable Re(z) represents

spot radius at :, approximated by ras-ing focus and diffraction effects.

RsLs) R- 1/ )/ 1

The term 2eR/Uw represents the clearing time at the aperture, end pro-

2vides a normalization for the time integration. P/wR provides a
normalization for the intensity, which depends on time (t) through x 0
and yo, which are both 0 for t - 0. For a beam slowed in the x
direction

Yo0 Z(t) - 0

13



but x0 (st) varies with the local clearing velocity. Assuming x 0 , Y0 O
nondimensionalized by aperture radius PM

-tU (z)
Xo(zt) - - =Z

with KJ(z) representing that velocity, approximated by

U.l) - Uwll + ( NS)
vA

As an example, consider a Gaussian beam with amplitude

2 _2
A 0 (x 0 ' YO exp(-x 0 -yO)

For the Gaussian profile, the normalized intensity

2
I[x 0 (z't} yO(z't)] 2 It•. u I(Z)\

2P~R) R (2)

The time integral of normalized intensity is

[ (2) .1)
Absorbing the A72 (1/2) in the overall C• relating to b6am shape, and

substituting for U.(z) and R (z), leaves the required z integral to

be just

SNDNF exp(-EZ) dz
0N6(1 + zN.sl - Z)

iS

The integral does not appear to be amenable to direct analytic
evaluation, so the options are numerical integration or analytic
approximation. Typically, numerical integration is difficult because

14



small steps are required to handle the rapid variation of the integrand.
Therefore, analytic approximation is preforred. Probably the fewest
approximations are required if integration by parts is employed. In

that case we find
i

Th [xp(-Ez)h + Czt exp(-eZ)y da

0

The indefinite integral

/2!!2 2 . 1/2

-+sZN) [cl - N)2 F

is available in an integral table by Klerer and Grossman. (6) Naturally,

the expression contains an integration constant. In principle, this

constant needs to be reset in such a way as to nullify the remainder

term
• 1

SZt f exp(-cZ)Yl dz

0

This can be accomplished at least approximately by using TO(z) - T•(O/2)
in place of TOz). This makes the expression for Th quite ccwplicat-A.

Utility is greatly served by reducing it to the case of small attenu

tion CZt, where the integration constant has no impact, and Th reduces
to

N N1 - -tln (NS ( 1 +A) (Ns + 1)

h ~ exp~et -B -+N + I+C

where
2 1/2

A - [(N + 1) + C

SB M+1+C

2NKC
r1



The condition for this result to be valid can be stated as

i - +( - exp(-ez t)y.()

16
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SECTION 5

CORRELATION DATA

Exten3ive simulations of atmospheric propagation have been per-
formed at NRL using a finite-difference wave-optics code, and these
provide the data base that estaolishes i strong correlation of the
form suggested in this report relating intensity on target to the
parameter Ih* There is very little scatter, and that which does exist
may be attributed to one of two factors:

(1) Earlier correlation studies by Seiders(7) established that
the spot size in the integrand denominator of Th should
not be Just the ideal diffraction-limited value, mainly
because of the iterative effect of blooming upon itself.
To account somewhat for this in a way that maintaims
reasonable simplicity, a free constant (m) scaling the

diffraction spot was introduced and evaluated by minimizing
residuals. Actually, such scaling must depend to same
exten." or physical variables, especially power. The idea
.e iteration to admit variable m has been tried, but so

far has not been sufficiently successful to justify the
effort.

,2) The raw data generated were not all of the same form. Data
for the infinite Gaussian beam comprised peak intensities,
wbireds those .o" the truncated Gaussian comprised 1/a2 area,
and those for the uniform beam momprised the more complex
area measuro of the form

dx dy

Mhe latter functional (A) is currently thought to lead to
the tightest correlation. s4

17
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The resultra of analyzing three beam shapes-infinite Gaussian, i/e2

truncated Gaussian, and uniform beam---are presented in Tables 2 through

4 and plotted in Figures 6 through 8. Supposing that ND and N. are

fixed and a2 equals zero, let us compare the three beam types. WeN 2 adta
recall that CB is proportional to C'aL and that

PC __kW ICB

and

I(PC) a-l
U C

The results tend to follow intuitively understandable patterns. First,

the parameter m affects the tightness of the correlation much less in

the case of the Gaussian beams than in the case of the uniform beam.

This is to be expected because blooming in the Gaussian case is driven

mainly by gradients near the aperture, whereas for the uniform bv;am such

gradients are minimized and blooming is driven by beam shape nearer

the focus, which is described by a. Secondly, the uniform bewa has
, 2

the smalleat a and C /VO, resulting in by far the largest PC. The

large PC is to be expected because, with les gradient near the aperture,

there is less lensing effect even at high power. The mall a means,

however, that the PC region is very broad and I(Pc)/Iu(fc) is very Gmall.

The two Gaussian beams have anonalously different C;, a, and a, but

they turn out to have similar mall PC values. But bethautie a is larger

for these cases, I(PC)/Iu(PC) is somewhat larger.

The actual peak intensity or. target at PC depends on PC' on

I(PC)/IU(Pc) - (a-l)/a, and on the diffraction-limited spot radius r5

=PC
C aL

S'C) a r

18 *



The spot radius for the three beam shapes, respectively, is proportional
to 2/w, 0.9166, and 0.9202. with the result that (P)for the truncated
Gaussian is only half that of the infinite Gaussian. The value for the

but at the price of nearly six times the power (which may nevertheless be

acceptable).

19



Table 2. Infinite Gaussiant I(P)/IU(P) - (1 + C;*a)-1.

rum Maximum C.a
Brror Error

0.142 0.949 0.011851 1.5029 1.0

0.109 0.667 0.010796 1.5891 1.5
0.102 0.614 0.010612 1.6189 1.75

Chosen °0.101 0.565 0.010590 1.6419 2.07
fit

0.112 0.607 0.010919 1.6715 2.5

PC 20.903 I(PC)/Iu(PC) - 0.39V•5 I(PC) = 20.163

&5.

4.5

3.5 s

R 2.5

x

1.5

iti

0 10 20 30 40

Figure 6. Functional fit for infinite
Gaussian beam.
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Table 3. i/,2 truncated Gausuian: I(P)/Iu(P)- (1 + C;)"

rum Maximum q a m
Error Error

0.170 0.981 0.018600 1.4323 3.5S~~~~~Chosen. :4o .. 4-Cho1en 0.169 0.924 0.019023 1.450
fit

0.172 0.874 0.019630 1.4646 4.5

0.178 0.828 0.020398 1.4743 5.0

0.187 0.788 0.021313 1.4805 5.5

0.198 0.752 0.022366 1.4938 6.0

P 27.780 I(Pc)/Iu(PC) - 0.31077 I(P 10.276

a 4.5

3.5

2.5 - K

1.5

K ,
• 0.5

0 10 20 30 40 50

Figure 7. Functional fit for 1/e2 truncated
Gaussian beam.

21
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Table 4. Uniform beam: I(P)/IU(P) - (1 + C;Th)

rms Maximum C a m

Error Error B

0.092 0.204 0.014732 1.1300 C.5

0.066 0.157 0.014395 0.1614 0.75
Choseft [ 0 . 0 6 3  0.139 0.014264 1.1777 1.0

0.093 0.255 0.014335 1.1986 1.5

0.112 0.317 0.014474 1.2054 1.75
0.130 0.374 0.014660 1..2106 2.0

P 160.09 I(Pc)/IU(PC) 0.15089 I(P 28.526

5

3

10 30 5w 7' 0 10 130 16

*h

.•Figure S. Functional fit for uniform beam.
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SECTION 6

SUMMARY OF FORMULAS FOR SYSTEMS ANALYSIS

Suppose that one wishes to calculate peak intensity on target for

a given set of conditions. The required steps are:

(1) Choose beam shape and set C•, a, m, m', and m".

SC; me m"
Ba

Infinite Gaussian 0.010590 1.6419 2.0 0.6366 1

Truncated Gaussian 0.028727 1.3715 4.0 0.9166 0.8893

Uniform Beam 0.014264 1.1777 1.0 0.9202 1.124

(2) Evaluate nondimensional numbers.

Absorption number NA - Zt

F 
tSlew number NS

S1
SFresnel number NF

tA

Distortion number ND • (2.333 x 10") - w

23
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(3) Evaluate linear dispersions.

aD2 - 0.5(~

o- 0.5(,

22a 2 3.01(/ C2 x3

Do = -R-

2 o 232
r0 a 3.017 (kc2 )-n3/5

2e .8 , 3.7R2,2 or 42 for infinite Gaussian, l/e2

truncated Gaussian, or uniform beam, respectively

D e)

8for 0< 3aT r01 r 0

U- (0) 01 - 1.1890)] for > 3

22oj appropriate to hardware

2
a appropriate to hardwareoW

2 2+ 2 2 2
L D T j W

(4) Evaluate effective beam qualities.

(M2o2 + a2 + 02)1/2
D ( aD oTm M. )

DO

2O ow21/2

I I " (aD/N)

24
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(5) Evaluate blooming dispersion.

E a+ 0

2N
c -N

B NS + + C2

A = [(Ns + 1) 2 + c 2 1 / 2

[-NDr F~ re ________

-Z 1 (N +lA)(NS +l1
OA ] jexp j lj(jn NS- S lA

a 2 a2 HIa

0B "C•C h

(6) Evaluate peak intensity.

P exp(-cZt)
lr~t L

I (P) - 2 2 2"
RZt(OL + OB) -

~ i

25
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